
Improving the Accuracy of Wearable Sensors for Human Locomotion
Tracking Using Phase-Locked Regression Models

Ton T. H. Duong, Student Member, IEEE, Huanghe Zhang, Student Member, IEEE,
T. Sean Lynch, Damiano Zanotto, Member, IEEE

Abstract— The trend toward soft wearable robotic systems
creates a compelling need for new and reliable sensor systems
that do not require a rigid mounting frame. Despite the growing
use of inertial measurement units (IMUs) in motion tracking
applications, sensor drift and IMU-to-segment misalignment
still represent major problems in applications requiring high
accuracy. This paper proposes a novel 2-step calibration method
which takes advantage of the periodic nature of human loco-
motion to improve the accuracy of wearable inertial sensors
in measuring lower-limb joint angles. Specifically, the method
was applied to the determination of the hip joint angles during
walking tasks. The accuracy and precision of the calibration
method were accessed in a group of N = 8 subjects who walked
with a custom-designed inertial motion capture system at 85%
and 115% of their comfortable pace, using an optical motion
capture system as reference. In light of its low computational
complexity and good accuracy, the proposed approach shows
promise for embedded applications, including closed-loop con-
trol of soft wearable robotic systems.

Index Terms— wearable technology, inertial sensors, human
motion analysis

I. INTRODUCTION

Wearable robotics has become an increasingly popular
research area in recent years. Exoskeletons, powered or-
thoses and robotic prostheses have shown great potential
in both healthcare and military applications [1]–[5]. Despite
recent advances in ergonomic designs, rigid-link exoskele-
tons are typically bulky and their kinematic structure may
constrain the user’s natural motions. Moreover, the mechan-
ical impedance of the rigid links and any misalignment
between the robot and the human joints can produce spurious
interaction forces that cause discomfort [6], [7].

For these reasons, more recent design trends aim toward
soft exoskeletons with artificial muscles or flexible actuators
to maximize the device’s transparency and reduce unde-
sired interaction forces [2], [8]–[10]. As a result, traditional
feedback sensors that require a rigid mounting frame (e.g.,
encoders, potentiometers, and load cells) have become un-
suitable. The emerging soft exoskeletons, or exosuits, create
a compelling need for new and reliable systems capable
of sensing joint angles during walking and other highly-
dynamic locomotion tasks, such as running and jumping.
Available options include systems based on IMUs [11]–[13],
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conductive fibers [14], and hyperelastic strain sensors [15].
Among those, IMUs hold great promise for measuring 3D
joint angles because they are lightweight, affordable, and
widely available in the market [11]. An IMU commonly
consists of 3-degree-of-freedom (DOF) accelerometer, gyro-
scope, and magnetometer. Besides the advantages mentioned
above, inertial motion capture systems (IMCSs) that rely on
IMUs have their own disadvantages. Firstly, the misalign-
ment between the IMU local frame and the anatomical frame
of the body segment is one of the factors that reduce the
accuracy of the measured angles [16]. Secondly, because
the 3D orientation of an IMU is commonly obtained by
integrating the angular velocity from the gyroscope data, the
error due to bias and noise can grow over time [17]. By using
the data from the accelerometer and the magnetometer as the
reference axes, the orientation drift can be reduced. How-
ever, for human locomotion applications, the compensation
from the accelerometer becomes less effective during highly
dynamic motions, in which the acceleration of the body
segment is larger than the gravitational acceleration [13],
[24]. On the other hand, because of the nonuniform magnetic
field in most indoor environments, heading corrections based
on magnetometer readings are often ineffective [18].

To address the IMU-to-segment misalignment problem,
two main approaches are commonly used: anatomical cali-
bration [19], [20] and functional calibration [21]–[24]. Com-
pared to anatomical calibration, functional calibration pro-
vides more accurate results [21]. In [22], a novel functional
calibration procedure was proposed to estimate the elbow
joint angles using angular velocity vectors. Another func-
tional calibration procedure was proposed in [23] for mea-
suring 3D knee joint angles. The authors of [24] introduced
a functional calibration method for segment orientation es-
timation, which was adapted for skiing tasks. In practice,
however, it is difficult for the subject to exactly perform
the calibrating movements required for specific joints. As
an alternative, a self-calibrating method which solves the
misalignment issue as a constrained weighted least squares
problem in a sliding window fashion was proposed in [26].
The method was inspired by the optimization-based approach
in [27]. In most of the studies summarized above, optical
motion capture systems (OMCSs) provided ground truth
data to validate a proposed calibration method for wearable
IMCSs. Because the relative orientation between the markers
of the OMCSs and the corresponding anatomical axes is
not precisely known, functional calibration can improve the
accuracy of both OMCSs and IMCSs [22].
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Unlike OMCSs, the accuracy of IMCSs is negatively
affected by drift. This makes the relationship between IMCSs
estimates and true anatomical data nonlinear and time-
varying, even after functional calibration is applied. Com-
mon approaches to address this issue include sensor fusion
algorithms [17]–[19] and methods based on biomechanical
constraints [24]–[27]. These approaches often result in long
setup time and are typically not suitable for implementa-
tion on embedded microcontrollers for out-of-the-lab appli-
cations. Notably, some approaches take advantage of the
periodic nature of human locomotion to reduce the drift using
Fourier-based integration and quaternion-based strap-down
integration [28], [29]. These methods, however, have not
been validated for measuring joint angles in walking motion.

In this paper, a novel 2-step calibration method applicable
to lower-extremity IMCSs is introduced and validated in
a custom-engineered device designed for the estimation of
bilateral hip joint angles. The first step, functional calibra-
tion, aims at determining the orientation of the body-worn
IMUs relative to the wearer’s anatomical axes. In the second
step, the cyclical nature of human locomotion is leveraged to
reduce drift and systematic errors in the IMCS estimates. A
series of linear models locked to the phase of the gait cycle
approximate the complex relationship between the corrected
joint angles produced in step 1 and the true anatomical
angles, thus improving accuracy. The rationale behind the
proposed method is twofold: (i) linear models do not require
large computational power, and therefore they can be im-
plemented in embedded controllers for lightweight wearable
robotic devices; (ii) the gait phase can be reliably extracted
online by applying well-known techniques [30], [31], which
are commonly used to inform the high-level controllers in
many existing lower-extremity wearable devices, including
robotic prostheses, orthoses, and suits [32]–[34].

This paper is organized as follows. Section II describes
the IMCS in detail. Section III provides the details about the
methods. Section IV presents the results. Section V discusses
the outcomes and presents the conclusion of the study.

II. SYSTEM DESCRIPTION

The custom-designed IMCS proposed in this work consists
of a belt module, two instrumented insoles, and a wireless
data logger. As shown in Fig. 1, the belt module consists of
three 9-DOF IMUs (Yost Labs Inc., OH, USA): one located
on the sacrum, two located on the lateral side of each thigh
and secured by Velcro straps. The IMUs are connected via
serial ports to a 32-bit microcontroller (ARM Cortex-M4F,
PJRC, OR, USA) which is secured inside the belt. The belt
module is powered by a small 7.4V, 860mAh Li-Po battery
through a 5V step-down voltage regulator. Four reflective
markers are attached to a custom-built enclosing case on each
IMU for validation with the OMCS. Markers placement on
the sacrum IMU is based on [35]. The overall weight of the
belt module including all components is approximately 400g.

The design of the instrumented insoles, named the Sport-
Sole, has been described in detail elsewhere [36], [37]. The
SportSole system includes a multi-cell piezo-resistive insole

Fig. 1: Custom-made IMCS consisting of a belt
module and a pair of instrumented shoes, SportSole.

(IEE, Luxemburg) and a 9-DOF IMU sandwiched between
two layers of abrasion-resistive foam. The integrated logic,
a Wi-Fi module, and a battery pack are housed inside a
small enclosure that is secured to the posterolateral side of
the subject’s own shoes. Each insole weights less than 70g,
including the on-board power and electronics.

Data are sampled at 200 Hz and 500 Hz by the belt module
and by the insoles, respectively. Data are sent through Uni-
versal Datagram Protocol (UDP) using Wi-Fi (IEEE 802.11)
to a data logger – a single-board computer (ODROID-C2,
Hardkernel Co., GyeongGi, South Korea) which runs a Linux
distribution with a real-time kernel. The same data are also
streamed to a graphical user interface (GUI) running on the
experimenter’s laptop. The GUI allows the experimenter to
control the device remotely throughout the functional cali-
bration process and to visualize the acquired data. Accurate
synchronization between the belt module and the insoles is
achieved using Broadcast Reference Time Synchronization
[39]. In this study, the SportSole was used only to segment
the subject’s hip angles, measured by the belt module,
into individual strides. Indeed, the method described in the
following relies on precise gait cycle segmentation. For this
reason, piezo-resistive sensors embedded in the insoles were
preferred over other methods (e.g., using the acceleration
signals from the hip or sacrum IMUs).

III. METHODS

A. Experimental Protocol

Eight healthy male adults (age: 24.7 ± 3.5 years, height:
177.8 ± 13.9 cm, weight: 72.2 ± 8.6 kg) participated in this
study. The purpose of these tests was to validate the accuracy
of the proposed 2-step calibration process in measuring hip
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Fig. 2: Experimental Protocol (FC = Functional Calibration)

angles in walking tasks at various speeds. The protocol was
approved by the Stevens Institute of Technology Institutional
Review Board and all subjects gave written informed consent
prior to the experimental sessions.

At the beginning of each session, the experimenter assisted
the subject in donning the belt module and the insoles. The
subject was then instructed to complete a 10-minute warmup
session (Fig. 2) on a dual-belt treadmill instrumented with
force plates (Bertec ITC-11-20L), to familiarize with the
system. In this session, the subject first started walking at
a random slow treadmill speed. The experimenter slowly
increased the speed by 0.03 m/s steps until the subject
reached a comfortable walking speed (CWS). The process
was repeated two additional times with the speed starting
from 0.42m/s above and below the first determined comfort-
able speed, respectively [38]. The final CWS was the average
of all three trials. Throughout this session, the treadmill speed
was blinded to the subject. Next, subjects were instructed to
perform two 3-minute walking bouts on the treadmill: one
at 85% and one at 115% of their CWS. The order of the
slow/fast bouts was randomized across the subjects. Before
each walking bout, functional calibration was performed to
align the IMUs to the body segments, as described in the
following section. There was a 5-minute break after each
test and the subject did not remove the IMCS until the end
of the experimental session. During each test, the positions of
the reflective marker clusters were captured by an 8-camera
OMCS (VICON Vero 2.2, Oxford, UK), which was used as
the reference system. A custom-made wireless board working
at 500 Hz was used to synchronize the OMCS to the IMCS
using a cluster of infrared LEDs [39].

B. Functional Calibration

In order to align the local frames of the IMUs and the
markers clusters to the anatomical axes of the body segments,
subjects were asked to perform the sequence of movements
shown in Tab. I. The coordinate systems of the pelvis and two
femurs were defined based on ISB recommendations [40].

For each movement, subjects were asked to perform
3 repetitions within 3 seconds. For the thigh abduction
movements, subjects were asked to land their feet back

TABLE I: Functional calibration movements

Segments Movement Calibrated Axis

Pelvis Trunk flexion/extension Pelvis z-axis

Trunk rotation right/left Pelvis y-axis

Thighs Squat with knees in parallel Thighs z-axes

Right thigh abduction Right thigh x-axis

Left thigh abduction Left thigh x-axis

to the initial position after performing each repetition. The
angular velocity vectors of the IMU which corresponded to
the segment being calibrated were recorded in matrix M
. The covariance matrix C was computed for matrix M
and eigendecomposition was applied on C to determine the
principal axes of the calibration movement. The normalized
eigenvector �v which corresponds to the largest eigenvalue
λmax of C was chosen to be the principle rotating axis of
the calibrating movement [22].

As shown in Table I, two types of calibration movements
were performed for each segment, yielding the orientation of
two anatomical axes per each segment, relative to the IMU
local frame. The third axis was then computed from the cross
product of these two, and the IMU-to-segment transformation
matrix Rsegment

IMU was constructed from these three orthogo-
nal axes. For instance, the transformation matrix to align the
IMU on the sacrum to the pelvis segment was determined
as follows.

�iPelvis = �jtemp
Pelvis × �kPelvis (1)

�jPelvis = �kPelvis ×�iPelvis (2)

RPelvis
IMU =

[
�iPelvis

�jPelvis
�kPelvis

]
(3)

where�jtemp
Pelvis is the temporary y-axis obtained from the trunk

rotation movement. This axis was then corrected using (2)
to maintain the orthonormal property of the unit vectors in
a transformation matrix.

After the segments were calibrated, subjects were asked
to stand still in the upright neutral position for 5 seconds in
order to obtain the average gravity vectors �g in the IMU local
frames. In this pose, we assumed that all vectors �ksegment

pointed to the right of the body [40]. Thus, the IMU-to-global
transformation matrix Rglob

IMU for each IMU was obtained as
follows:

�jglob = −�g (4)

�iglob = �jglob × �ksegment (5)

�kglob =�iglob ×�jglob (6)

Rglob
IMU =

[
�iglob �jglob �kglob

]
(7)

Knowing the IMU-to-global and IMU-to-segment transfor-
mations for each segment, two rotational matrices describing
the relative orientations between the left/right thighs and the
pelvis could be determined, from which the left and right
hip angles (flexion/extension, abduction/adduction) were ex-
tracted [41]. Although hip internal/external rotation, in prin-
ciple, can be computed using the same method, transverse
plane motion was not considered in this study, which focuses
on measuring the anterior/posterior and medio/lateral hip
kinematics in walking motion, i.e., the hip DOF that are
usually actuated in lower-extremity exoskeletons [42].

For validation purposes, the functional calibration proce-
dure described above was applied also to OMCS marker
clusters to obtain ground-truth estimates.
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C. Phase-locked Linear Regression Models

In the second step of the calibration procedure, regression
models were applied to reduce drift and other systematic
errors in the raw estimates of the hip angles determined in
step 1. These phase-locked models take advantage of the
cyclical nature of human locomotion. In addition to the raw
hip angles, a set of scalar covariates are fed as inputs to
the models. Two calibration approaches, subject-specific and
generic, are proposed to train the models. Once trained, the
models can run on the IMCS’ embedded logic (assuming
that an on-line estimate of the gait phase is available,
e.g., using phase oscillators [30], [31]) in the unconstrained
environment, without the need for the OMCS.

To train the regression models, hip flexion/extension (FE)
and abduction/adduction (AA) obtained with the IMCS and
OMCS were first segmented into gait cycles (using in-
soles data and force plates data, respectively), then time-
normalized into a set of N = 101 equally spaced data points
(i.e., 0-100% of the gait cycle, GC). Stride time (ST), root
mean square (RMS) of the thigh angular velocity over the GC
(ωRMS), and elapsed time (ET) were regarded as candidate
covariates for all the models.

Further, data from slow and fast walking bouts were
pooled prior to calibration, with the goal of deriving models
that are robust within a broad range of walking speeds.

1) Subject-specific Calibration: This calibration method
generates a set of regression coefficients that are optimal,
in the least squares (LS) sense, for a particular subject. This
approach yields high accuracy at the expense of longer setup
time, since reference data must be measured from the subject
prior to data collection. On the other hand, after calibration,
the subject’s hip angles can be measured in the unconstrained
environment.

N independent linear regression models were generated in
the following form:

Y O
tr,i ∼ Ŷ I

tr,i + x1,i + x2,i + . . .+ xr,i, i ∈ [1, N ] (8)

where Y represents the generic hip angle (FE, AA) measured
with either the OMCS (superscript O) or with the IMCS
(superscript I), the index i refers to the percentage of the GC,
x∗ are a set of r covariates, and the subscript tr indicates
the training dataset. These models yielded a set of (r + 2)
optimal regression coefficients β̄j,i from which the estimate
of Y can be computed as:

Ŷ O
i = β̄0,i + β̄1,iY

I
i +

r∑
k=1

β̄k+1,ixk, i ∈ [1, N ] (9)

10-fold cross validation [43] was used to validate these
models, and the final regression coefficients were obtained by
averaging across the 10 folds. Further, the optimal set of re-
gressors for each hip angle was extracted among the group of
candidate regressors by checking all possible combinations
of regressors for all subjects through cross-validation, and
by selecting the model yielding the least RMS error (RMSE)
across all subjects. For the two hip angles, the optimal set
of regressors was found to coincide with the full set.

2) Generic Calibration: This approach represents the
common application of the IMCS, when collecting reference
data is either unfeasible or unpractical, thereby the calibra-
tion model must account for inter-subject variability. The
generic models are similar to (8) and (9), except that an
additional candidate regressor, subject’s body mass index,
was considered. These models were trained and validated
using leave-one-out crossvalidation [44]. Similar to the
subject-specific calibration, exhaustive search was adopted to
identify the best subset of regressors, i.e., the one yielding
the least RMSE for each angle. This optimization indicated
the corresponding hip angle estimated from step 1 as well
as ET as the optimal set of regressors. ET is regarded as the
regressor that most account for drift correction.

D. Data Analysis

For each subject, the mean absolute error (MAE), the
RMSE, the SD of the error and the coefficient of deter-
mination (R2) were computed for each type of calibration
and for each hip angle. For both angles, group averages of
the MAE were compared through paired t-tests, in order to
assess significant (α = 0.05) differences among the types of
calibration.

IV. RESULTS

A total of 2124 gait cycles was collected by the wearable
system and by the reference system. Depending on subject’s
walking speed, which ranged from 0.86 m/s to 1.73 m/s (1.12
± 0.15 m/s), the number of gait cycles per subject varied from
225 to 300 (276.2 ± 24.14). Fig. 3 illustrates the effect of the
type of calibration on the estimated hip angle trajectories for
a representative subject. Fig. 4 shows the MAE of each hip
angle, under the three calibration modes considered. Tab. 2
shows the average error metrics across all subjects for each
calibration method.

For the FE angles, both the subject-specific and the generic
models were effective in significantly reducing the residual
systematic errors after functional calibration was applied
(p<.001 and p<.05, respectively) even though, as expected,
the former method resulted in higher accuracy (p<.01).

��� ���

Fig. 3: Average hip joint trajectories for a representative
subject. Bounded areas indicate +/- 1SD.
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Fig. 4: Group averages of the MAE for the hip angles,
separated by type of calibration. Error bars indicate +/-1SE.

A similar trend was found for the AA angle, with the MAE
being significantly reduced for the subject-specific calibra-
tion compared to both the functional calibration (p<.001)
and the generic calibration (p<.001). However, the generic
calibration did not reduce the MAE significantly, relative to
the functional calibration.

V. DISCUSSION AND CONCLUSION

This paper presented a simple and yet effective method
to improve the accuracy of inertial motion capture systems,
which leverages the periodic nature of human locomotion
by using phase-locked regression models. The approach was
validated on a custom-engineered IMCS designed to track
bilateral hip angles. The proposed 2-step calibration method
is computationally simple and therefore suitable for real-time
embedded systems. Even though the method was tested on
hip angles, in principle it can be applied to other joints of
the lower-limb (i.e., knee and ankle), which are less complex
than the hip joint. Because many existing lower-extremity
robotic exoskeletons and prostheses feature embedded esti-
mators of the gait phase [33], [34], the proposed approach
has the potential to be readily deployed in those systems.

By adopting the subject-specific models, the accuracy of
the IMCS in estimating the hip angles was significantly
improved. Compared to the results reported by the authors of

TABLE II:
Average RMSE, MAE, Error SD AND R2

(All angles are in degree)

Angle RMSE MAE STD R2

Fun. Cal. 3.68 3.15 2.35 0.96

FE Subj. Spec. 0.68 0.53 0.67 0.99

Generic 2.58 2.18 1.80 0.98

Fun. Cal. 2.51 2.11 1.92 0.83

AA Subj. Spec. 0.59 0.46 0.59 0.98

Generic 2.21 1.82 1.74 0.84

[18], the proposed approach yielded lower average RMSE for
both hip angles. The IMU-to-segment alignment procedure
presented in that study required an OMCS, which makes
it impractical for out-of-the-lab applications. Conversely, in
the proposed approach, functional calibration was applied
on-line on embedded logic before data collection, without
the need for a reference system. Additionally, all subject-
specific models yielded accurate results within a broad range
of walking speeds (i.e. within +/-15% of subject’s CWS),
whereas the effect of varying speed was not assessed by
previous works.

Furthermore, the subject-specific method proposed in this
paper was effective in correcting drift by encoding the effects
of error build-up at the beginning and ending of the gait
cycle in the phase-locked models [29]. Although different
drift correction methods which exploit the cyclical nature
of human gait were proposed in the past [28], [29], these
methods were not validated for measuring joint angles in
walking motion. Other approaches presented in [17], [24],
[25], [27]–[29] can also reduce the errors due to drift by
relying on more complex correction techniques (i.e., sensors
fusion and biomechanical constraints). However, differences
in terms of experimental protocol and type of investigated
motor tasks make any direct comparison with the proposed
approach impossible.

Although the generic calibration proved to be effec-
tive in further reducing systematic errors for the hip flex-
ion/extension angle, no significant improvement compared
to the functional calibration data was found for the abduc-
tion/adduction angle. This limitation might have resulted
from the high inter-subject variability in the data. Errors
in the functional calibration movements could also have
caused subject-specific orientation offsets that are difficult
to compensate with a generic model. This issue was also
described in other studies [18], [24].

In general, both the subject-specific and the generic mod-
els improved the goodness of fit (R2) of the data obtained
with functional calibration. This suggests that phase-locked
models can effectively correct the maximum/minimum range
of motion error [18], which commonly occurs at specific
phases of the gait cycle.

Future work will include improving the robustness of
the generic models against inter-subject variability, e.g., by
introducing learning-based regression models, which have
better expressive power than linear models. Moreover, a
larger sample will be collected to train the generic calibra-
tion models, and the test-retest reliability of subject-specific
models will be studied. The performance of these models
in highly dynamic tasks, such as running and jumping, will
also be evaluated.
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